Telegram Group & Telegram Channel
Расскажите про линейные модели: где используются и как обучаются?

Такие модели выявляют линейные зависимости в данных. Наиболее известны линейная и логистическая регрессии. Первая применяется для предсказания значения зависимой переменной, для задачи регрессии. Вторая — для задач классификации.

🎓 Обучение линейных моделей можно проводить с помощью градиентного спуска. Для линейной и логистической регрессии процесс обучения имеет схожие шаги, но различается используемой функцией потерь.
▪️Линейная регрессия.
Её обучение заключается в нахождении оптимальных коэффициентов, или весов, перед признаками в уравнении прямой. Чтобы найти веса с помощью градиентного спуска, сначала нужно инициализировать вектор весов случайными числами. Затем нужно вычислить градиент функции потерь (обычно MSE — среднеквадратичное отклонение) и обновить веса, вычитая из них произведение градиента с learning rate. Шаги повторяют, например, до тех пор, как функция потерь не стабилизируется.
▪️Логистическая регрессия.
Главное отличие от линейной регрессии заключается в функции потерь — здесь используется log-loss (логарифмическая функция потерь). Процедура обновления весов остается схожей.

#машинное_обучение



tg-me.com/ds_interview_lib/266
Create:
Last Update:

Расскажите про линейные модели: где используются и как обучаются?

Такие модели выявляют линейные зависимости в данных. Наиболее известны линейная и логистическая регрессии. Первая применяется для предсказания значения зависимой переменной, для задачи регрессии. Вторая — для задач классификации.

🎓 Обучение линейных моделей можно проводить с помощью градиентного спуска. Для линейной и логистической регрессии процесс обучения имеет схожие шаги, но различается используемой функцией потерь.
▪️Линейная регрессия.
Её обучение заключается в нахождении оптимальных коэффициентов, или весов, перед признаками в уравнении прямой. Чтобы найти веса с помощью градиентного спуска, сначала нужно инициализировать вектор весов случайными числами. Затем нужно вычислить градиент функции потерь (обычно MSE — среднеквадратичное отклонение) и обновить веса, вычитая из них произведение градиента с learning rate. Шаги повторяют, например, до тех пор, как функция потерь не стабилизируется.
▪️Логистическая регрессия.
Главное отличие от линейной регрессии заключается в функции потерь — здесь используется log-loss (логарифмическая функция потерь). Процедура обновления весов остается схожей.

#машинное_обучение

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/266

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Importantly, that investor viewpoint is not new. It cycles in when conditions are right (and vice versa). It also brings the ineffective warnings of an overpriced market with it.Looking toward a good 2022 stock market, there is no apparent reason to expect these issues to change.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA